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SUMMARY

This study accurately predicts the cases of turbulent flow around a surface-mounted two-dimensional rib
with varying lengths. The numerical method employs a differencing scheme for integrating the elliptic
Reynolds-averaged Navier–Stokes equations and the continuity equation. A two-equation k–o turbu-
lence model is employed to simulate the turbulent transport quantities and close the solving problem. The
near-wall regions of the separated sides of the rib are resolved by a near-wall model of a two-layer
approach instead of the wall function approximation. Computations for flow over a surface-mounted
rectangular rib are conducted for the variations in the rib lengths. Results indicate that upstream of the
obstacle, the length of the recirculating region remains unchanged with varying rib lengths; while the
downstream length of the recirculating region is a strong function of rib length and changes nearly
linearly for the varying lengths of B/H=0.1 to B/H=4.0. Reattachment on top of the rib, owing to its
increasing length, affects the downstream boundary layer development. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Flows including separation and reattachment frequently occur in many engineering problems.
These flows can be observed in wind engineering and many fluid devices, such as weirs, gas
turbines, turbomachines and combustion ducts. Despite their frequent appearance in engineer-
ing, the study of them is still limited due to the complexities and difficulties encountered. The
flow around a surface-mounted obstacle constitutes two basic study cases for strongly
separated flows occurring both upstream and downstream of the obstacle. The basic character-
istic of such flow configurations is the integral parameters of the length of the recirculating
region afore and behind the obstacle. These lengths depend on the ratio of the boundary layer
thickness of the approaching flow to the obstacle height and also the geometry of the obstacle
itself.

Numerous investigations have been conducted to examine such a turbulent flow around
two-dimensional surface-mounted ribs. In the experiments, Bergeles and Athanassiadis [1]
measured the lengths of the recirculating regions afore and behind the obstacle. Antoniou and
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Bergeles [2] measured the mean velocity and turbulence intensity along with integral properties
of the developing flow to examine the region behind a two-dimensional surface-mounted prism
of varying length after reattachment. In using a conventional fiber optic laser-Doppler
anemometer (LDA) system, Acharya et al. [3] measured the flow of mean velocities and
Reynolds stresses in the upstream and downstream recirculating regions of a separated duct
flow past a two-dimensional surface-mounted square rib. In the numerical investigations, most
of the studies attempted to improve the turbulence models to simulate the turbulent trans-
ported quantities. It included the studies of Acharya et al. [3], Durst and Rastogi [4] and
Benodekar et al. [5]. To account for the near-wall effects in using the non-linear k–o model to
simulate the turbulence quantities, the wall function approximations are used in these studies.
Predicted results indicated that all the models underpredict the magnitude of the mean
velocities and Reynolds stresses in the near-wall regions of the separated sides.

In consideration of the flow parallel to the wall and equilibrium relations, the use of the wall
function for the near-wall treatment is correct only for simple shear flows. As mentioned
previously, flow past a surface-mounted rib exists as strongly separated flows around the
obstacle. Hence, a certain error is created when the wall function approach is applied to
predict such complex wall shear flows. An alternative to the use of wall functions is to employ
turbulence models that are valid all the way to the wall. In recent years, many researchers have
tried to develop low-Reynolds number models by incorporating either a wall damping effect or
a direct effect of molecular viscosity or both in the empirical constants and functions in the
turbulence transport equations, derived originally for high-Reynolds number, fully turbulent
flows far from the wall. Several low-Reynolds number models have been reviewed by Patel et
al. [6] and Michelassi and Shih [7]. Previous calculations indicated that the damping functions
developed for attached boundary layers are not always well behaved in separated flows.

In order to save grid points and hence computer storage and time comparing low-Reynolds
number models, and also to introduce the fairly well-established length scale distribution very
near the walls into the turbulence model, the use of a two-layer approach becomes more
effective. In the two-layer approach the near-wall viscosity affected regions are resolved, where
the dissipation rate of the turbulent kinetic energy o is determined by a prescribed length scale
distribution lo instead of by the transport differential equation. A variety of two-dimensional
boundary layer flows and separated flows have been tested with two-layer models, e.g. adverse
pressure gradient boundary layer flows [8] and flows with secondary reversed flow [9,10]. It is
found that two-layer models can predict more promising results than the wall function
approach. Hence, it is concluded that two-layer models are promising tools for practical
applications in flows where wall function approximations are either not applicable or inaccu-
rate. The main objectives of the present study are, therefore, to assess the ability of the
standard k–o turbulence model in coupling with the framework of the two-layer approach to
predict the flow behaviour and to investigate the flow past a surface-mounted prism with
varying lengths.

2. MATHEMATICAL FORMULATION

2.1. Go6erning equations

As Figure 1 schematically shows, the physical problem considered in this study is a turbulent
conduct flow over a surface-mounted, two-dimensional rectangular rib with varying lengths.
The governing Reynolds-averaged equations for steady state turbulent flow of a two-
dimensional incompressible fluid are
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where (U, V) and (u, 6) denote the mean velocity components and the fluctuating velocity
components in the (X, Y) directions respectively, P represents the mean pressure, n is the
molecular kinematic viscosity and (uu, u6, 66) are the Reynolds stresses.

2.2. Turbulence models

To solve Equations (1)–(3), a turbulence model for the turbulent transport quantities has to
be specified. Herein, the standard k–o model [11] based on the Boussinesq approximation is
adopted. The local mean state of turbulence can be characterized by the turbulent kinetic
energy k and its dissipation rate o according to
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with

nt=Cmk2/o. (5)

Figure 1. The considered flow problem.
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The equations for k and o can be written as
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sk, so, Cm, C1 and C2 are modelling coefficients given as follows:

Cm sk so C1 C2

1.0 1.3 1.440.09 1.92

To account for the near-wall effects in the standard k–o model, a two-layer approach is used.
In the viscosity affected regions near the wall of the separated regions, these turbulent
equations were modified analytically to resemble the near-wall approach method of Chen and
Patel [8]. The turbulent eddy viscosity nt is determined by

nt=Cmk1/2lm, (8)

and o is determined from

o=k3/2/lo. (9)

The length scales lm and lo are adopted as follows:

lm=C3y [1−exp(−Ry/Am)], (10)

lo=C3y [1−exp(−Ry/Ao)], (11)

where both length scales contain damping effects in the near-wall region in terms of the
turbulence Reynolds number Ry=k1/2y/n. Here y is the normal distance from the wall. The
turbulence model moduli are given as C3=kCm

3/4, Ao=2C3 and Am=70, where k is the
Karman constant and Cm=0.09.

In conducting the computation, the flow domain is divided into two regions. Region I
includes the sublayer, the buffer layer and part of the fully turbulent layer. A one-equation
model is employed in this region to account for the wall proximity effects. In region II, beyond
the near-wall layer, the standard k–o model is employed to calculate the velocity field as well
as the eddy viscosity. The matching between the one-equation model and the model used
further away from the wall should be effective near the viscous sublayer edge, where viscosity
effects become small. For fully turbulent boundary layers this corresponds to the order of
y+�100. For good near-wall resolution, the first grid point should be located at y+�1 and
15 grids are set across to the near-wall layer in the computation of the near-wall boundary.
When the viscous sublayer is resolved with the one-equation model, the no-slip conditions are
used as boundary conditions.
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2.3. Boundary conditions

Figure 1 presents the flow of the calculation domain. The inlet boundary is located at 15 rib
heights upstream of the obstacle. To compare the results with experimental data of Acharya et
al. [3], their inlet flow conditions were used for the specification.
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2, o0=k1.5/H,

where the boundary layer thickness, du=3.3H and HD=9.5H.
The outlet boundary conditions are specified at a location of 20 rib heights downstream of

the obstacle. There, the normal gradients of the mean velocities and turbulent quantities are
taken to be zero. No-slip boundary conditions are imposed along the fixed walls and the
boundary conditions are specified as U=V=k=0.

3. COMPUTATIONAL DETAILS

3.1. Numerical techniques

This study indicates that the numerical computations were performed on a non-uniform and
staggered marker and cell (MAC) grid system. In the staggered grid system, the pressure and
other dependent scalar variables, such as k and o, are calculated at nodal points of the mean
velocity.

To solve the partial differential equations (1)–(7), which are of an elliptic type, a computer
code based on the power law difference (PLD) method [12] is constructed for use in the present
study. Briefly, the convection and diffusion terms of the transport equation for f (f=
U, V, k, o), i.e.

((Ujf)
(Xj

=
( [G((f/(Xj)]

(Xj

+Sf,

are discretized by the PLD and the source term by the second-order central differencing, and
then integrated within a control volume element to obtain an algebraic equation. The pressure
field P is solved with the SIMPLEC algorithm of Van Doormaal and Raithby [13]. The linear
algebraic equation system is solved by the alternating direction line by line iteration method.
The convergence criterion is specified as the relative difference of every dependent variable
between iteration steps being smaller than 10−4. The computations were performed on a
Pentium-pro 200 PC. It takes 20000 iterations and 4 h of CPU time to obtain a steady solution
with grids of 139×86.

3.2. Grid independence studies

Numerical experiments have also been conducted to determine an adequate grid distribution
for this study. Two grid distributions, (139, 86) and (250, 150), are used to conduct the
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Figure 2. The arrangement of the computation grids near the rib.

computations for the case of turbulent flow over a surface-mounted two-dimensional square
rib. In all cases, the grid points were non-uniformly distributed using a power law expression
of an automatic mesh generator used by Nichols et al. [14] in such that the mesh in the x- and
y-directions was packed toward the rib. Figure 2 presents the arrangement of the grid mesh
near the rib. The reattachment lengths behind the rib predicted by the present model on the
(139, 86) and (250, 150) meshes were within 6% of each other. On the mean velocity prediction
of the x component at four sections of X/H= −1.4, −0.5, 3.8 and 7.1, the profiles of the
mean velocity distribution on the (139, 86) and (250, 150) meshes were found to be similar.
Therefore, results herein are considered to be grid-independent. Grid sizes of computations
adopted in this study are varied with cases of different length to height ratios of rib and
indicated as follows:

0.1B/H 0.5 1.0 2.0 4.0
127×86 139×86 139×86 143×86(Nx×Ny) 146×86

4. RESULTS AND ANALYSIS

4.1. Test case

To test the accuracy and validity of the numerical computations, a case of a turbulent duct
flow over a surface-mounted two-dimensional square rib (B/H=1) is computed and compared
with the previous study of Acharya et al. [3]. Table I shows all relevant parameters in the
experiments of Acharya et al. [3] and the corresponding values used in present model.
Computational results are presented for those quantities reported. The first consideration is to
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predict the gross parameters of the flow fields, among which the reattachment length is a
sensitive parameter that has been historically used to assess the overall predictive ability. In the
experimental study of Acharya et al. [3], reattachment occurs at L/H=6.390.9, while the
reattachment length predicted in this study is L/H=6.9. It indicates that the prediction of the
current study is within the experimental uncertainty.

To compare the predicted results with the related study, profiles of the U, V, uu, 66, u6 are
plotted for several stations at upstream, top surface and downstream of the rib. In Figures 3
and 4, the computed mean velocity of profiles U and V are compared with the experimental
data of Acharya et al. [3], and also their predicted results. The finding indicates that the
near-wall treatments by the two-layer approach do improve the prediction better than that
predicted by the wall function in the near-wall region at a station above and downstream of
the rib. At the station x/H= −1.4 upstream of the rib, both models underpredict the
magnitude of the velocity in the stagnant region when compared with the measurements. The
reason may be as stated by Rodi [15] that, in stagnation flows, the turbulent energy production
is mostly due to normal stresses rather than shear stresses. It may then cause the prediction to
have such a significant deviation in the upstream stagnant region using an isotropic eddy
viscosity model. A turbulence model can account for better anisotropic effects and conse-
quently the energy productions may lead to improving the computational results in the front
region of the rib.

Figures 5–7 depict respectively, the computed profiles of (uu)1/2, (66)1/2 and (u6)1/2 compared
with the experimental data of Acharya et al. [3]. Predicted results by the two-layer approach
apparently fit better with the experimental data in the near-wall region than that predicted by
the wall function treatment. Hence, the standard k–o turbulence model encountered with the
near-wall treatment of two-layer approach can be an effective model to examine the flow
problem of the turbulent flow past a surface-mounted rib.

4.2. Rib of 6arying lengths

Flow past a surface-mounted rib with varying lengths has been conducted for five cases,
namely B/H=0.1, 0.5, 1.0, 2.0 and 4.0. Figure 8 presents the calculated streamline contours
for flow past a rib with varying lengths. It can be seen that the flow passes over the prism and
then reattaches downstream. The horizontal distance from the downstream rib side to the
reattachment point is called the recirculating length (or the reattachment length). At the
upstream side of the rib, an upstream recirculating region also occurred owing to the blockage
of the rib. It is found that upstream of the obstacle, the lengths of the main recirculating region
are nearly identical at varying lengths of the rib; however, the downstream length of the
recirculating region is a strong function of the length of rib. Figure 9 depicts the length of the
downstream recirculating region L/H in the variations of the rib length, B/H with respect to
the rib height. It indicates that L/H changes almost linearly from 7.9 for B/H=0.5 to 4.8 for
B/H=4.0. Restated, increasing the length of the obstacle decreases the length of the

Table I. Relevant dimensional and non-dimensional parameters (in SI units)

Parameters U0 du H B HD n Lin Lout Re=
U0×HD/n

Experimental 14 0003.6 0.02096 0.00635 0.00635 0.061 1.57E−5 0.095 0.191
data [3]

0.00635 0.061 1.57E−5 0.095 0.127Present study 14 0003.6 0.02096 0.00635

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 767–785 (1999)



R.R. HWANG ET AL.774

Figure 3. U/U0 at different streamwise locations for the case of B/H=1.
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Figure 4. V/U0 at different streamwise locations for the case of B/H=1.

recirculating region downstream. Also conducted was a case with B/H=5.0, the length of the
recirculating region downstream obtained is nearly the same as the case of B/H=4.0. For the
case of B/H=4.0, the flow separates from the upstream leading-edge of the obstacle and
reattaches on the top surface of the obstacle where part of it is deflected upwards entering into

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 767–785 (1999)
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the recirculating region located on the top of the surface while the other moves downstream.
It thus proves that after the flow reattachment on the top surface of the obstacle, the length
of the recirculating region downstream remains nearly unchanged irrespective of the obstacle
length. This is similar to the experimental study of Bergeles and Athanassiadis [1].

Figure 5. (uu)1/2/U0 at different streamwise locations for the case of B/H=1.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 767–785 (1999)
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Figure 6. (66)1/2/U0 at different streamwise locations for the case of B/H=1.
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Figure 7. (u6)1/2/U0 at different streamwise locations for the case of B/H=1.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 767–785 (1999)
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Figure 8. Streamfunction contours for flow over rib with varying length.
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Figure 9. Length of recirculation region behind rib vs. B/H.

Wall static pressure distribution for flow over the rib is also obtained. The calculated wall
static pressure distribution is expressed by the pressure coefficient, defined as

Cp= (Pw−Pc)/
1
2

rU0
2,

here Pw is the bottom wall pressure and Pc is the reference pressure at the far upstream of the
duct flow above the rib. Figure 10 presents the pressure coefficient distribution on the wall
surface for various rib lengths. It can be seen that the distributions of the wall pressure
coefficient are all the same in the rib’s region upstream. It increases gradually and drops
rapidly to a negative value at the rib’s upstream corner owing to the blockage effect of the
obstacle. The same distribution of wall static pressure indicates that the equal upstream
recirculating lengths are formed for various cases of rib lengths. On the top surface of the
obstacle, the pressure increases faster. When increasing the obstacle length it seems that the
increase of the pressure is reduced and the leading-edge separation line is sucked toward the
surface, resulting, therefore, in a quicker reattachment on the top surface, as it is shown for the
case of B/H=4.0. The wall pressure coefficient behind the rib remains constant for a distance
and then increases smoothly to zero to recover the flow development along the flow direction.
The predicted wall static pressure distributions for flows past a rib with varying lengths (Figure
10) also indicate the redevelopment rate of the flow behind the rib after reattachment. This
finding reveals the faster recovery for the cases of B/H\2 than that of B/HB2. It may be
stated that when reattachment on the top surface of the obstacle occurs, the flow development
behind the rib recovers faster than that of the non-reattaching case.
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Figure 10. Wall static pressure distribution for flow over rib with varying length.
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Figure 11. Mean velocity profiles at X*/H=5, 10 and 15.
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Figure 12. Turbulent kinetic energy profiles at X*/H=5, 10 and 15.
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As mentioned previously, the flow separates from the upstream leading-edge and reattaches
on the top surface of the rib or behind it depending on the value of the length to height ratio
of the rib. The flow configuration of the region behind the rib of varying length after
reattachment is also examined. Mean velocity and turbulence kinetic energy have been
calculated at three stations downstream after reattachment from X*/H=5 to X*/H=15 for
three different length to height ratios of the rib; X*=X−L is measured from the point of
reattachment. Figure 11 shows velocity profiles at three stations of X*/H=5, 10 and 15
respectively for three lengths of the rib examined. It is observed that in cases of B/H=2 and
4, at station X*/H=10, the mean velocity profiles for these two lengths coincide well with
each other. Thus, it could be argued that, after the reattachment of the flow on the top of the
rib occurs, the rate of flow recovery is almost the same. The corresponding profiles of
turbulence kinetic energy are presented in Figure 12. At X*/H=10, the turbulence kinetic
energies for cases of B/H=2.0 and B/H=4.0 nearly coincide with each other. At X*/H=15,
it is seen that the mixing and spreading of the shear layer has resulted in a more uniform
distribution of the turbulence kinetic energy. It can then be remarked that the redevelopment
of the flow behind the rib after reattachment, at the same distance from reattachment, is seen
to be different for cases of B/HB2 and B/H\2. It then depicts, as stated before, when
reattachment on the top surface of the obstacle occurs, the flow development behind the rib
after reattachment recovers faster than that of the non-reattaching case.

5. CONCLUSIONS

The turbulent flow past a surface-mounted two-dimensional rib with varying lengths has been
numerically investigated. Compared with the previous studies, the use of the standard k–o

turbulence model in coupling with the near-wall treatment of the two-layer approach improved
predictions of the mean velocities and Reynolds stresses near the wall region of the shear layer.
The characteristics of the flow around surface-mounted obstacles depend appreciably on the
length to height ratios of the obstacle. The flow separates from the upstream top corner of the
obstacle and reattaches behind it. Increasing the obstacle length will cause the shear flow
originating from the upstream edge of the obstacle to split twice at the reattachment points on
top and behind the obstacle. The length of the recirculation region behind the obstacle was
found to decrease linearly with increasing obstacle length and then to remain constant once
reattachment on top of the obstacle occurred. The flow’s redevelopment after reattachment at
the same distance from reattachment is observed to be different for cases of varying length.
The flow field behind the obstacle after reattachment recovers its boundary layer development
more rapidly for the occurrence of reattachment on top of the obstacle than that behind it.
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